

Multiple Crew Station Xecutor (MCSX), Shane G. Sopel, Mark G. Russell, Keith E. Zwick.

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited. OPSEC# 4269

2020 NDIA GROUND VEHICLE SYSTEMS ENGINEERING and TECHNOLOGY
SYMPOSIUM

VEA Technical Session
August 11-13, 2020 - Novi, Michigan

GVSETS 2020 Paper: Multiple Crew Station Xecutor (MCSX)

Shane G. Sopel, Mark G. Russell, Keith E. Zwick

Vehicle Electronics and Architecture (VEA),
U.S. Army Combat Capabilities Development Command (CCDC)

 Ground Vehicle Systems Center (GVSC), Warren, MI

ABSTRACT

Technology and innovation are growing at a rapid rate, placing increasing
demands on military vehicles. With these advances come additional burdens to our
ground vehicle systems due to escalating threats in areas such as situational
awareness and cybersecurity. In order to deal with this ever-changing threat
environment, additional computing resources are needed. Given the additional
costs of high performance hardware, harnesses, software development,
sustainment, and licensing fees, consolidation of resources can be essential in
reducing costs. Leveraging today's latest technologies in distributed systems,
advanced microprocessors, and accelerated graphics, this research proposes a
solution to consolidate multiple crew stations into a single processing resource.
Not only are these computing resources more powerful, they come at a more
affordable price when configured properly.

Citation: S. Sopel, M. Russell, K. Zwick, “Multiple Crew Station Xecutor (MCSX)”, In Proceedings of the Ground
Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020.

 1. INTRODUCTION
 Multiple Crew Station Xecutor (MCSX) is
an innovative concept that allows for
multiple independent crew stations to be
simultaneously operated by using only one
ruggedized computing unit. Soldiers seated at
different crew stations will continue to
seamlessly function mutually exclusively
with each other, while still adhering to the
configured soldier crew input and output
(Crew I/O) required for their station’s
specific requirements. The hardware that

makes up crew stations and the Crew I/O are
a rugged display, a rugged computing unit
with attached harnesses, and optionally a
Keyboard Video Mouse (KVM) device.
MCSX is a Linux based utility that leverages
open source software packages which incur
no additional costs. Using Linux provides the
ability to deploy MCSX across multiple
hardware architectures, such as ARM, x86-
64, and Power PC. Furthermore, the multi
crew station deployment highly leverages
graphical hardware, software, and tools.

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

2

2. CREW STATION DISPLAY
RENDERING

 2.1 Rendering Software & Tools
 The “Xecutor” in MCSX utilizes the
Unix/Linux based windowing system (‘X11’,
or simply ‘X’), which executes all graphical
display sessions. An X display Session is an
instantiated GUI interface. Specifically, X11
is a Graphical User Interface (GUI) that
renders windows and images. It also
provides the framework and the tools
necessary to allow a user to interact with
mouse, keyboard, touchscreen, and other
input devices. The individual session a single
user has is known as a user session.

2.2 Display Rendering Architecture
 X creates its user-to-display interfaces
using a client-server software architecture
model as described in [1]. The main purpose
of the X server is to provide a graphical
display and control of that display to users.
Clients are the application(s) the user desires
to display and interact with via the X
window. Servers are numbered, starting with
a 0 and prefixed with a colon. For example,
when referencing the first server, command
line users can map their client using the
syntax DISPLAY = “:0”. A typical dual
display configuration is depicted below in
Figure 1.

Figure 1 - Screen Layout

Using other X tools such as xorg-input-
evdev, the X server is capable of handling
user input such as mice, keyboards, or

touchscreens. Figure 2 provides an example
of a simple X server-client architecture.

Figure 2 - X Window Server Architecture

2.3 Xephyr
 X provides a large variety of tools and
functions that allow developers to customize
their environment. One of the tools used to
develop MSCX is Xephyr. Xephyr is an open
source software utility that implements X11
display server protocols. It extends and
builds upon X by implementing X11 nesting,
which deploys multiple software based X11
servers to crew station displays. MCSX
deploys Xephyr at boot-up by initializing the
parent X server, (server: 0) to spawn multiple
child servers / sessions to span across
multiple displays [2]. The parent server is
responsible for performing all of the frame
buffering (rendering display data on the
physical screens) needed on each crew
station display [3]. The beauty behind this
configuration is users get infinite
configurability of window screen
placements, heights, and widths. An example
of this can be observed below in figure 3.

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

3

 Figure 3. Xephyr Screen Layout

● Session :0 is the parent and is responsible

for all resources and frame buffering for
the entire graphics rendering real-estate.

● Session :1 is virtually connected to
display one, allowing crew station A the
capability to function independently.

● Session :2 and :3 are embedded into
session :1; this is an additional feature
operators can use for unique widgets and
other apps executing on the hardware.

● Session :4 is virtually connected to
display two, allowing crew station B the
capability to function independently.

2.4 Mapping Input Devices

 X11 and Xephyr are also responsible for
managing crew input devices such as touch
screen, bezel buttons, and keyboards. Xephyr
requires mapping of physical devices to their
respective X servers. In order to control each
input device, every Xephyr session interacts
directly with the underlying hardware device
driver. Specifically, the Xephyr session takes
control of the input device directly. This is
accomplished through the use of Xephyr’s
evdev driver that communicates on behalf of
the hardware device driver. Consequently,
no other server will have access to these
inputs once they are locked. The Linux bash
shell input script to initialize hardware lock
can been seen below:

#!/bin/bash

xkb='xkbrules=xorg,xkbmodel=evdev,xkblayout=us'

#Keyboard Configuration
kbd1='/dev/input/by-id/usb-

Dell_Dell_Multimedia_Pro_Keyboard-event-kbd'

#Mouse Configuration
mouse1='/dev/input/by-id/usb-

PixArt_USB_Optical_Mouse-event-mouse'

#Start Crew Station Configuration
startx -- /usr/bin/Xephyr -resizeable -origin +0+0

-fullscreen :1 -keybd "evdev,,device=$kbd1" -mouse
"evdev,,device=$mouse1" &

The script is used to initialize one
independent crew station. Keyboard and
mouse variables are added to set the device id
paths needed for the hardware used by the
specific crew station. The startx portion will
start the xephyr executable and add the screen
size requirements, the X server notation, and
the locked in keyboard and mouse hardware
configuration.

3. MULTI CREW STATION
CONFIGURATION AND DEPLOYMENT
 In the same manner as computing
hardware for existing vehicular crew stations,
there are common hardware interfaces
required to operate a MSCX crew station.
These interfaces consist of multiple dumb
displays with bezel and touch screen
capabilities, a single ruggedized computing
unit that utilizes common hardware buses,
and potentially one or more attached sensors
or devices. Specifically, the dumb display is
a hardware unit that has little to no processing
capabilities. Additionally, it consists of a
touch-capable surface that is populated with
bezel buttons surrounding the outside of the
screen. The ruggedized computing unit
provides the crew with interfaces that utilize
common communication hardware buses.
These interfaces consist of Controller Area
Network (CAN) bus, Universal Serial Bus
(USB), Ethernet, Graphical Processing Units
(GPUs). These interfaces need to be capable
of providing video, diagnostic, audio and
network interfaces.

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

4

3.1 Configuring Resources for MCSX
 One of the benefits behind MCSX lies in
its ability to deploy multiple software
applications across multiple crew stations
while executing on a single system. The
utilization of Xephyr provides the
environment in which applications can
execute independently of each other, while
sharing the underlying computing resources
of the host system. Along with graphics
processing, the ability of the system to share
common computing resources is crucial to
MCSX and should also be transparent to
applications attached to each crew station.
Each software application should behave as
if it is operating on a standalone system. All
that is required is to configure the
applications to work with the various
protocols and exposed I/O devices of the
underlying host system. This flexibility of
the divvying up of resources amongst the
crew stations and the sharing of different
communication protocols is crucial to its
success. Examples of shared resources are:

● Graphics Processing Units (GPUs):

Crew Stations tailored for MCSX may
have one or more GPUs. A concept
known as ‘multi-seating’ exists for dual
GPU configurations, but comes with
greater challenges, specifically with
configuration of user accounts.
Additionally, deploying crew station
computing hardware with more than one
GPU presents added challenges that
include managing heat generation and
dissipation, increased costs, and likely
limiting potential vendors. The ability to
drive multiple mutually exclusive
displays and crew stations with one GPU
can be facilitated by the use of Xephyr, as
described above. This software enables
user sessions to create the same interface
as the multiple GPUs’ sessions, without
having the same concerns of power

consumption and heat dissipation that
multiple GPUs have.

● Network Interface Card (NIC): A
requirement of having multiple crew
stations may be the need to have
independent IP addresses for each station.
If a requirement of a physical adaptor to
each IP is not needed, IP aliasing or
routing can be used. According to The
Linux Foundation, IP aliasing [5] or IP
routing [6] allows for the binding of
multiple or many virtual interfaces
(aliases) to one physical card. These IP
addresses can be part of the same subnet
or on two different logical network
subnets. Therefore, each crew station can
be configured to work with an
independent IP address while providing it
a unique address on the network.

● Controller Area Network (CAN Bus):
CAN data messages can be shared
between each application running on a
crew station through use of CAN
software, preferably SocketCAN. Unlike
traditional CAN software which typically
talks to a character device similar to a
serial driver and has limited functionality,
The Linux Foundation states [4]
SocketCan provides a socket interface
which builds upon the Linux network
layer overcoming the limitation of one
process reading CAN message data.
Communication with the CAN bus is
done analogously to the use of the
Internet Protocol. Each application can
have its own CAN Id for communicating
and use one CAN interface for reading
and writing on the CAN Bus. If CAN bus
data is to be restricted from all
applications, another application layer
outside of the Xephyr X11 server could
be added to read in all CAN
communication. It can then act as a CAN
bridge providing applications with

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

5

information via Internet Protocols or
other network communication
mechanisms.

● Audio: Due to the complexities of the
multiple crew stations sending/receiving
audio at the same time, a mechanism may
need to be added to broker the audio
produced by each crew station or
application. If multiple processes attempt
to use a sound card simultaneously, it is
necessary to broker the audio with a
server like PulseAudio. PulseAudio is
described by Archlinux [7] as a sound
server that runs as middleware between
your applications and hardware devices.
A sound server would be set up as a
background process accepting sound
input from various sources and sharing it
with the other processes running in the
various crew stations.

● Serial Devices: Due to the limitations of
only one process reading a specific serial
device, it would require a publish-
subscribe methodology [8] where one
process running in a crew station, or the
host system itself, would read the data
and share it to the other processes running
in the various crew stations.

Through the use of Xephyr, and the shared
system’s resources Xephyr is running on, the
possible application configurations are only
limited by the limitations of the system
resources itself.

3.2 MCSX Computing Overhead
 When deploying MCSX, it’s important to
be cognizant of the additional overhead that
may be incurred as a result of running
multiple software applications from one
computing unit. This research recorded some
basic metrics that track the use of additional
MCSX resource sharing. The data was
obtained by exercising VEA software that

was executed on a 2nd generation dual-core
2.2Ghz Intel Core i7 with an onboard Intel
graphics processor. The following metrics
were recorded when measuring some of the
previous section’s additional capabilities:

• Shared CAN Bus Monitoring. The

demo CAN monitoring software
instantiated twelve CAN-bus Line-
Replaceable Units (LRU) proxy stacks.
Each proxy monitors for LRU-specific
CAN traffic and decodes incoming
messages at a rate of 1000 Hertz.
Mimicking a non-MCSX deployment,
only an average of 10% of one CPU was
utilized throughout the run. When a
second instance of this software was
launched (which implies MCSX is
configured to simultaneously execute
another similar crew station application),
the average CPU utilization doubled to
20% of one CPU as expected.

• GPU Utilization. The Linux command-
line Intel GPU tool was launched to
measure the overhead incurred when
running VEA’s event and QT-based
graphical user interface application.
Only 3% GPU usage was measured when
rendering one crew station application.
The GPU usage was upped to 7% when
deploying Xephyr and two simultaneous
crew station graphical user interface
applications.

• RS232 -> Ethernet Publish / Subscribe.

The example application consumes a
twenty four byte diagnostic message at a
rate of 1 Hz. Reading RS-232 data at
9600 bps incurs a small amount of
mandatory overhead, but the diagnostic
data still needs to be distributed to
multiple crew stations. In this test
configuration, there is a UDP publisher
application and there are multiple UDP
subscriber applications. Each application

https://wiki.archlinux.org/index.php/PulseAudio
https://wiki.archlinux.org/index.php/PulseAudio

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

6

was extremely light weight as they all
reported an average of 0% CPU usage.

Modern CPUs and GPUs are well optimized
and are more than capable of efficiently
sharing resources. Physical devices such as
network cards are capable at operating at
speeds of up to 2 Gbps; allocating this
amongst multiple crew stations provides
much more bandwidth then most LRUs
require. These findings support the notion
that the MCSX architecture will not add
many constrains in deployment.

4.0 REFERENCE ARCHITECTURE
 An example of an architecture leveraging
MCSX is depicted in the Figure 4 reference
diagram. Inside a vehicle there are two
ruggedized systems running MCSX on two
different network enclaves. The network
consists of an unsecure enclave and a secure
enclave to provide protection of sensitive
information from being accessed by
unauthorized users or applications. This
proposed design will leverage MCSX to
minimize space claim and costs in a
constrained system.

Computer Systems: Three crew stations
and one targeting system are running within
two ruggedized computer systems. Operator
two has the ability to switch to another
system in their existing space.

Displays: Four displays were needed for this
system but with the use of the KVM using the
shared resources of the ruggedized computer
in the unsecured enclave, three were
sufficient.

Shared Resources: Through the use of
shared resources such as DVI, HDMI, USB,
and Network Interface Cards, resources can
be configured and routed to each crew
station. This will allow for each crew station
to communicate independent of each other.

Cross Domain Data: The targeting system
running on the ruggedized computer with
crew station C is able to share data with crew
station C, while simultaneously having its
video sent to the unsecured enclave via
HDMI to the KVM. The KVM would then
display that video to operator 2 without any
of it being accessed by crew station B
applications.

 By leveraging MCSX, this reference
architecture effectively reduced the need of
four screens to three and the use of four
independent computer systems to two, which
collectively operates four applications. With
the ability of utilizing shared resources on
two ruggedized computer systems, MCSX
has been able to save space by reducing in
half the amount of hardware and cabling, and
the potential reduction of a fourth operator.
With this reduction of space comes a
reduction in cost. Integrating this
architecture into a fleet of vehicles could
provide significant savings for the United
States Army.

Figure 4. Reference Architecture

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

7

5. FIELDING & COST IMPLICATIONS
 Vehicle platform engineers and program
managers have difficult hardware and
software procurement tradeoffs to make
when developing and fielding the vehicle of
tomorrow. If total vehicular Size, Weight,
Power, and Cost (SWaP-C) drive the
majority of the system requirements,
implementing MCSX provides savings on all
of the aforementioned measurables.
Naturally, if a vehicle can deploy with the
same functionality and one less computing
crew station, total cost, power consumption,
weight, and space claim can be reduced.
Furthermore, the number of vehicle
harnesses that are required will be reduced as
well.

5.1 SWaP-c Assumptions
 Given costs for average crew station
hardware items, small and large vehicle
harnesses, and software runtime /
deployment software licenses at large
economies of scale, the potential projected
cost savings for a crew station in a fleet
vehicle can be assumed:

Hardware Item Cost

Ruggedized Computing Unit $6,000.00

Ruggedized Dumb Display $10,000.00

2 Smaller Harnesses $1500.00

1 Large Harness $2000.00

Software Support Fees $1000.00

Total $20,500.00

Table 1: Hardware Item Costs

Using the example reference architecture
provided above in the previous section, this
research suggests that a vehicle can
consolidate four crew stations into three.
With the average projected cost of $20,500
per crew station, but with the addition of one

KVM, the following per-vehicle costs with
and without MCSX can be extrapolated:

Cost With MCSX Without MCSX

Total Crew
Stations

(3 @ $20,500):
$61,500

(4 @ $20,500):
$82,000

KVM $3,500 -

Total $65,000 $82,000

Table 2: Per Vehicle Costs

The Stryker vehicles provide an excellent
example of projecting cost savings across the
breadth of an entire fleet. Given that there are
approximately 3000 fielded Strykers at any
given time, and, again this research
approximates that the average cost savings
per vehicle is $20,500, then the program
management office could potentially realize
a cost savings of 3000 x $20,500 =
$61,500,000. In addition to saving costs,
other tangible savings can be quickly
achieved by deploying an architecture that
uses MCSX, including:
● Logistics. Vehicle logisticians will

benefit by having to track one less crew
station’s worth of part numbers.

● Size. An estimated 1-2 cubic feet of
value real estate would be saved, as well
as improved ingress / egress with reduced
harness footprints.

● Weight: Not significant, as it may only
save a maximum of ~20-40 pounds.

● Power: Approximate savings of ~30-60
max watts.

6.0 SUMMARY
 The Multi Crew Station Xecutor provides
unique methods to consolidate crew stations,
hardware resources, and software
applications. This proposed solution
provides opportunities for vehicle platform
designers to save cost and space where
multiple crew stations are combined into one
computing unit and one display while

 Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

8

simultaneously arbitrating between
connected crew input devices. These
advantages for procurement and deployment
must be carefully weighed against the
inherent risks; in the event of a computing
hardware failure, multiple crew stations may
now become inoperable. Nevertheless,
simpler backup solutions would likely
mitigate some risk. Through effective
leveraging of shared hardware computing
resources as well as designing properly
configured and managed software
applications, MCSX has the potential to
change the landscape of vehicular hardware
deployment and offer the possibility of
saving millions of taxpayer dollars.

References
[1] The X Window System: A Brief Introduction
http://www.linfo.org/x.html

[2] Xorg Xephyr
https://www.x.org/archive/X11R7.5/doc/man/man1/
Xephyr.1.html

[3] Xorg Xvfb
https://www.x.org/releases/X11R7.6/doc/man/man1/
Xvfb.1.xhtml

[4] SocketCAN
https://www.kernel.org/doc/Documentation/networki
ng/can.txt

[5] IP Aliasing
https://www.kernel.org/doc/html/latest/networking/al
ias.html

[6] IP Routing
https://wiki.linuxfoundation.org/networking/iproute2

[7] PulseAudio
https://wiki.archlinux.org/index.php/PulseAudio

[8] Publish-subscribe pattern
https://en.wikipedia.org/wiki/Publish-
subscribe_pattern

http://www.linfo.org/x.html
https://www.x.org/archive/X11R7.5/doc/man/man1/Xephyr.1.html
https://www.x.org/archive/X11R7.5/doc/man/man1/Xephyr.1.html
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://www.kernel.org/doc/Documentation/networking/can.txt
https://www.kernel.org/doc/Documentation/networking/can.txt
https://www.kernel.org/doc/html/latest/networking/alias.html
https://www.kernel.org/doc/html/latest/networking/alias.html
https://wiki.linuxfoundation.org/networking/iproute2
https://wiki.archlinux.org/index.php/PulseAudio

	2020 NDIA GROUND VEHICLE SYSTEMS ENGINEERING and TECHNOLOGY SYMPOSIUM
	VEA Technical Session
	August 11-13, 2020 - Novi, Michigan
	GVSETS 2020 Paper: Multiple Crew Station Xecutor (MCSX)
	Shane G. Sopel, Mark G. Russell, Keith E. Zwick
	Vehicle Electronics and Architecture (VEA),
	U.S. Army Combat Capabilities Development Command (CCDC)
	Ground Vehicle Systems Center (GVSC), Warren, MI
	ABSTRACT
	Technology and innovation are growing at a rapid rate, placing increasing demands on military vehicles. With these advances come additional burdens to our ground vehicle systems due to escalating threats in areas such as situational awareness and cyb...
	Citation: S. Sopel, M. Russell, K. Zwick, “Multiple Crew Station Xecutor (MCSX)”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020.
	1. INTRODUCTION
	Multiple Crew Station Xecutor (MCSX) is an innovative concept that allows for multiple independent crew stations to be simultaneously operated by using only one ruggedized computing unit. Soldiers seated at different crew stations will continue to ...
	2. CREW STATION DISPLAY RENDERING
	2.1 Rendering Software & Tools
	The “Xecutor” in MCSX utilizes the Unix/Linux based windowing system (‘X11’, or simply ‘X’), which executes all graphical display sessions. An X display Session is an instantiated GUI interface. Specifically, X11 is a Graphical User Interface (GUI)...
	2.2 Display Rendering Architecture
	2.3 Xephyr
	X provides a large variety of tools and functions that allow developers to customize their environment. One of the tools used to develop MSCX is Xephyr. Xephyr is an open source software utility that implements X11 display server protocols. It ex...
	3. MULTI CREW STATION CONFIGURATION AND DEPLOYMENT
	In the same manner as computing hardware for existing vehicular crew stations, there are common hardware interfaces required to operate a MSCX crew station. These interfaces consist of multiple dumb displays with bezel and touch screen capabiliti...
	3.1 Configuring Resources for MCSX
	One of the benefits behind MCSX lies in its ability to deploy multiple software applications across multiple crew stations while executing on a single system. The utilization of Xephyr provides the environment in which applications can execute in...
	3.2 MCSX Computing Overhead
	4.0 REFERENCE ARCHITECTURE
	An example of an architecture leveraging MCSX is depicted in the Figure 4 reference diagram. Inside a vehicle there are two ruggedized systems running MCSX on two different network enclaves. The network consists of an unsecure enclave and a secur...
	5. FIELDING & COST IMPLICATIONS
	Vehicle platform engineers and program managers have difficult hardware and software procurement tradeoffs to make when developing and fielding the vehicle of tomorrow. If total vehicular Size, Weight, Power, and Cost (SWaP-C) drive the majority of...

